If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1n^2+20n+26=7
We move all terms to the left:
1n^2+20n+26-(7)=0
We add all the numbers together, and all the variables
n^2+20n+19=0
a = 1; b = 20; c = +19;
Δ = b2-4ac
Δ = 202-4·1·19
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-18}{2*1}=\frac{-38}{2} =-19 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+18}{2*1}=\frac{-2}{2} =-1 $
| 12x-8=75 | | n^2+20n+26=7 | | 15.5+2.5y=13+2y | | x+2=10(x-2) | | x+2)(x+3)=x^2-10 | | .80x+0.05(12-x)=0.10(21) | | b^2+8b-77=-9 | | x+2=10(x-2) | | x2=10x+21/2x | | -2/3(x+1)=6 | | 9x=132 | | 16n=45+11n | | 10x-199=x+15x | | -1.50x=33.96x | | 3/2(m-2)=21 | | 33.96=x-1.50 | | 5x+2x+1=12+3 | | 0.5(x-28)=1+8x | | 2x+7(5x-8)=14 | | 0.25p+0.25=0.5 | | 33.96x=x-1.50 | | 14x=195 | | 19x=195 | | 1.99x+6=+2.50x | | 7x-9°=4x+22° | | 5x+(4x-11)+x=180 | | 9^3x+2=3^x+3 | | 7x+-9°=4x+22° | | 6n-9=13 | | 8x+28=86 | | -12x+8x=-96 | | 140x-84=140x-84 |